Experimental investigation of process parameters for roll-type linear chemical mechanical polishing (Roll-CMP) system

2014 
Abstract The fabrication processes for electronic components are now demanding a higher degree of planarity for integration and multistacking, with chemical mechanical polishing (CMP) processes replacing conventional etching or mechanical polishing owing to their ability to attain global planarization. As CMP has been applied to more and more fields, new types of CMP machines have been developed. This study introduces a novel roll-type linear CMP (Roll-CMP) process that uses a line-contact material removal mechanism to for the polish flexible substrates, and examines the effect of the process parameters on the material removal rate (MRR) and its nonuniformity (NU). The parameters affecting the Roll-CMP process include down force, roll speed, table feed rate, slurry flow rate, slurry temperature, and the table oscillation length. Increasing the down force, roll speed, slurry flow rate, and slurry temperature resulted in a high average MRR (MRR avg ). Further, the MRR avg was found to decrease with an increase in the oscillation length because of the effect of the polishing area. A large down force, high roll speed, high table feed rate, and high slurry flow rate were effective for reducing the NU. These results will be helpful for understanding the newly developed Roll-CMP process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    11
    Citations
    NaN
    KQI
    []