Incorporating Indium Selenide Nanosheets into a Polymer/Small Molecule Binary Blend Active Layer Enhances the Long-Term Stability and Performance of Its Organic Photovoltaics.

2020 
In this report, we demonstrated that the incorporation of 15 wt % two-dimensional transition-metal dichalcogenide materials indium selenide (In2Se3) nanosheets into a polymer (PM6)/small molecule (Y6) active layer not only increased its light absorption but also enhanced the long-term stability of the PM6/Y6/In2Se3 ternary blend organic photovoltaic (OPV) devices. The power conversion efficiency (PCE) of the device was improved from 15.7 to 16.5% for the corresponding PM6/Y6 binary blend device. Moreover, the PM6/Y6/In2Se3 device retained 80% of its initial PCE after thermal treatment at 100 °C for 600 h; in comparison, the binary blend device retained only 62% of its initial value. This relative enhancement of 29% resulted from the In2Se3 nanosheets retarding or facilitating molecule packing in different orientations that stabilizes the morphology of the active layer. We adopted a modified kinetics model to account for the intrinsic degradation of the OPV; the degradation-facilitated energy for the degradation kinetics of the PCE for the ternary blend device was 5.3 kJ/mol, half of that (11.3 kJ/mol) of the binary blend device, indicating a slower degradation rate occurring for the case of incorporating In2Se3 nanosheets. Therefore, the incorporation of transition metal dichalcogenide nanosheets having tunable band gaps and large asymmetric shape appears to be a new way to improve the long-term stability of devices and realize the practical use of OPVs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    4
    Citations
    NaN
    KQI
    []