Structurally-Sensitive Multi-Scale Deep Neural Network for Low-Dose CT Denoising

2018 
Computed tomography (CT) is a popular medical imaging modality and enjoys wide clinical applications. At the same time, the X-ray radiation dose associated with CT scannings raises a public concern due to its potential risks to the patients. Over the past years, major efforts have been dedicated to the development of low-dose CT (LDCT) methods. However, the radiation dose reduction compromises the signal-to-noise ratio, leading to strong noise and artifacts that down-grade the CT image quality. In this paper, we propose a novel 3-D noise reduction method, called structurally sensitive multi-scale generative adversarial net, to improve the LDCT image quality. Specifically, we incorporate 3-D volumetric information to improve the image quality. Also, different loss functions for training denoising models are investigated. Experiments show that the proposed method can effectively preserve the structural and textural information in reference to the normal-dose CT images and significantly suppress noise and artifacts. Qualitative visual assessments by three experienced radiologists demonstrate that the proposed method retrieves more information and outperforms competing methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    120
    Citations
    NaN
    KQI
    []