Enhanced protein stability: a novel mechanism of D-type cyclin over-abundance identified in human sarcoma cells.

1996 
: The mammalian D-type cyclins promote progression through a G1 checkpoint by phosphorylating the retinoblastoma protein (pRB), and can contribute to oncogenesis via their deregulated expression achieved through gene amplification, chromosomal rearrangement, or retroviral integration. We now report a novel mechanism of tumour-associated D-cyclin over-abundance, resulting from enhanced protein stability. In two human cell lines established from a single uterine sarcoma biopsy, pRB-positive SK-UT-1B and pRB-deficient SK-UT-1, aberrant accumulation of functional cyclins D1, and D2 and D3 occurred in the absence of gene amplification and/or elevated mRNA expression. The abundance of D-cyclin proteins remained elevated throughout the cell cycle, and pulse-chase experiments revealed six to 10-fold prolongation of their protein half-lives as compared with either diploid fibroblasts or control U-2-OS sarcoma cells. These results point to a critical regulatory role of D-type cyclin turnover, and contribute to refinement of current views of the role played by the cyclin D-CDK-p16-pRB pathway in cell cycle control and tumorigenesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    47
    Citations
    NaN
    KQI
    []