Directional ablation in radiofrequency ablation using a multi-tine electrode functioning in multipolar mode: an in-silico study using a finite set of states

2020 
Abstract Purpose To analyse the feasibility of directional ablation using a multi-tine electrode. Methods A multi-tine electrode capable of operating in multipolar mode has been used to study the directional ablation. In addition to the basic design, similar to commercially available FDA approved multi-tine electrode, tines have been insulated from each other inside the probe base and tip using a thin insulating material of thickness 0.25 mm. A cylindrical single-compartment model of size 6 cm × 6 cm has been used to model normal liver tissue. The temperature-controlled radiofrequency ablation has been employed to maintain the tine-tips at different temperatures. Electro-thermal simulations have been performed by using a commercial multi-physics software package based on finite element methods. To make this study feasible a new approach to predict the ablations have been proposed and used in this study. Results Asymmetric ablation zone with up to 5 mm difference in ablation boundary between the intended and non-intended direction has been observed along the transverse direction. Reduction in ablation up to 5 mm along the axial direction in comparison to the monopolar mode has also been observed. Conclusion Multi-tine electrode modified to operate in multipolar mode can create directional ablations of different shapes and can be used to target position and shape specific tumours.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    1
    Citations
    NaN
    KQI
    []