PSIque: Next Sequence Prediction of Satellite Images using a Convolutional Sequence-to-Sequence Network.

2017 
Predicting unseen weather phenomena is an important issue for disaster management. In this paper, we suggest a model for a convolutional sequence-to-sequence autoencoder for predicting undiscovered weather situations from previous satellite images. We also propose a symmetric skip connection between encoder and decoder modules to produce more comprehensive image predictions. To examine our model performance, we conducted experiments for each suggested model to predict future satellite images from historical satellite images. A specific combination of skip connection and sequence-to-sequence autoencoder was able to generate most close prediction from the ground truth image.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    12
    Citations
    NaN
    KQI
    []