Complex decorrelation averaging in optical coherence tomography: a way to reduce the effect of multiple scattering and improve image contrast in a dynamic scattering medium.

2017 
We demonstrate that complex decorrelation averaging can reduce the effect of multiple scattering and improve optical coherence tomography (OCT) imaging contrast. Complex decorrelation averaging calculates the product of an A-scan and the complex conjugate of a subsequent A-scan. The resultant signal is the product of the amplitudes and the phase difference. All these resulting complex signals at a particular location are then averaged. We take advantage of the fact that complex averaging, in contrast to conventional magnitude averaging, is sensitive to phase decorrelation. Sample motion that increases signal phase variance results in lower signal magnitude after complex averaging. Such motion preferentially results in a faster decorrelation of the multiple scattering signal when compared to the single scattering signal with each scattering event spreading the phase. This indicates that we may reduce multiple scattering by implementing complex decorrelation averaging to preferentially reduce the magnitude of the multiply scattered light signal in OCT images. By adjusting the time between phase-differenced A-scans, one can regulate the amount of measured decorrelation. We have performed experiments on liquid phantoms that give experimental evidence for this hypothesis. A substantial improvement in OCT image contrast using complex decorrelation averaging is demonstrated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    8
    Citations
    NaN
    KQI
    []