Optimal model of desalination planning under uncertainties in a water supply system
2021
A requirement for developing desalination efforts in coastal regions suffering water scarcity is proposed to address the increased water demand and limited traditional water supply. The determination of a plant capacity and water allocation scheme in a multiple-source water supply system, as the first problem in planning desalination under streamflow and water demand uncertainties, remains a challenge. To address this gap, an interval-parameter two-stage stochastic programming model is developed in this study. The first-stage problem is to determine a proper desalination plant capacity, and the second is the development of a water allocation scheme under the uncertainties of natural streamflows, water demands, benefits and economic losses. The objective function is to maximize the net benefit of the system, and the cost function of desalination, including capital and operational costs, implying environmental impact, is linearized within a range of plant capacities to solve the model. The proposed approach is applied to an urban area of Weihai in China to illustrate the validity of the model. The results suggest a capacity of 46 × 103 m3/d in 2030 and 55 × 103 m3/d in 2040. Sensitivity analyses of the parameters indicate that a decrease in the unit price of electricity leads to an increase in the utilization level of desalinated seawater. A complementary relationship was observed between reclaimed water and desalinated seawater, in that a decrease in the use rate of reclaimed water from 0.38 to 0.18 led to a 15% increase in desalinated plant capacity.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
50
References
0
Citations
NaN
KQI