Liquid-liquid Phase Separation of Polymeric Microdomains with Tunable Inner Morphology: Mechanistic Insights and Applications

2019 
Abstract Hypothesis: Liquid-liquid phase separation (LLPS) can provide micron-sized liquid compartments dispersed in an aqueous medium. This phenomenon is increasingly appreciated in natural systems, e.g., in the formation of intracellular membraneless organelles, as well as in synthetic counterparts, such as complex coacervates and vesicles. However, the stability of these synthetic phase-separated microstructures versus coalescence is generally challenged by the presence of salts and/or surfactants, which narrows the range of possible applications. We propose a new strategy to obtain micron-sized liquid domains via LLPS, by mixing an amphiphilic copolymer with surfactants and sodium citrate in water at room temperature. Experiments: Combining Confocal Laser Scanning Microscopy (CLSM) and Differential Scanning Calorimetry (DSC) with Dissipative Particle Dynamics (DPD) simulations, we map the phase diagram to detect LLPS and address the presence and morphology of these microscopic domains. This mapping in turn provides a first mechanistic hypothesis for the formation of such confined polymer-rich microenvironments. Findings: LLPS is driven by the phase behavior of the copolymer in water and by its associative interactions with surfactants, combined with the water-sequestering ability of salting-out electrolytes. The key factor for LLPS and formation of microdomains is the entropy-driven dehydration of the copolymer head groups, which can be quantified through the Free Water Content (FWC). Interestingly, the internal morphology of the LLPS microdomains is finely controlled by the ratio between nonionic and anionic surfactants. Beside its applicative potential, this approach represents a tool for designing synthetic mimics that improve our understanding of the occurrence of LLPS in cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    7
    Citations
    NaN
    KQI
    []