Enhanced thermoelectric performance in MXene/SnTe nanocomposites synthesized via a facile one-step solvothermal method

2021 
Abstract As a promising alternative to the toxic PbTe-based thermoelectric materials, eco-friendly SnTe has attracted considerable attention. Here, we use a facile solvothermal method to in-situ synthesize MXene/SnTe nanocomposites. Comprehensive characterization results indicate that the incorporation of two-dimensional MXene in SnTe matrix can suppress Sn vacancies to result in a reduced carrier concentration and induce abundant MXene/SnTe interfaces, which simultaneously optimizes the electrical and thermal transport properties. As a result, with the optimized MXene content, the maximum figure of merit of ∼0.63 ​at 823 ​K is obtained in SnTe with 0.6 ​wt% MXene, which shows a 60% enhancement compared to pristine SnTe. This work explores a new strategy to introduce two-dimensional MXene into SnTe-based materials with improved thermoelectric properties, which can inspire new pathways into designing and synthesizing high-performance thermoelectric materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []