Colony-forming cells in chronic granulocytic leukemia--II. Analysis of membrane markers.
1986
Abstract Membrane markers and functional properties in vitro of blast cells from the peripheral blood of 2 patients with chronic granulocytic leukemia were studied. Buffy-coat cells were enriched for colony-forming cells by density centrifugation ( d ≤1.062 g cm −3 ). Upon culture, a large proportion of the (cryopreserved) low-density cells from both patients formed hemopoietic colonies that were heterogeneous with respect to size and cellular composition. Expression of membrane markers on the cells, which had the morphology of undifferentiated blasts, was studied using flow cytometry with a panel of monoclonal antibodies. A striking heterogeneity was observed in that variable numbers of cells were found to express myelomonocytic, megakaryocytic and erythroid membrane markers. Antigenic properties of colony-forming cells were studied by sorting of cells with a fluorescence activated cell sorter. Low numbers of cells (10, 4 and 1, respectively) were sorted directly into the wells of Terasaki microtest plates. With this system, it was shown that myeloid colony-forming cells from patient 1 were exclusively present in HLA-DR-positive cell fractions. Colony formation from the level of a single sorted cell was documented. Sorting of cells labeled with anti-blood-group-H antibody showed that small erythroid colony-forming cells from patient 2 were blood-group-H antigen-positive. These cells did not express HLA-DR. The other colony-forming cells from this patient and essentially all colony-forming cells from patient 1 were HLA-DR-positive and blood-group-H-negative. Although only 2 patients were tested, our studies clearly demonstrate that low-density cell fractions from the blood of patients with CGL provide distinct advantages for the study of membrane properties of hemopoietic cells and of hemopoietic differentiation in general.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
37
References
17
Citations
NaN
KQI