γ-Irradiation–Induced DNA Damage Checkpoint Activation Involves Feedback Regulation between Extracellular Signal-Regulated Kinase 1/2 and BRCA1

2008 
Previous studies from our laboratory have shown that the activation of G 2 -M checkpoint after exposure of MCF-7 breast cancer cells to γ-irradiation (IR) is dependent on the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. Studies presented in this report indicate that IR exposure of MCF-7 cells is associated with a marked increase in expression of breast cancer 1 (BRCA1) tumor suppressor, an effect that requires ERK1/2 activation and involves posttranscriptional control mechanisms. Furthermore, reciprocal coimmunoprecipitation, as well as colocalization studies, indicate an interaction between BRCA1 and ERK1/2 in both nonirradiated and irradiated cells. Studies using short hairpin RNA targeting BRCA1 show that BRCA1 expression is necessary for IR-induced G 2 -M cell cycle arrest, as well as ERK1/2 activation in MCF-7 cells. Although BRCA1 expression is not required for IR-induced phosphorylation of ataxia telangiectasia mutated (ATM)–Ser1981, it is required for ATM-mediated downstream signaling events, including IR-induced phosphorylation of Chk2-Thr68 and p53-Ser20. Moreover, BRCA1 expression is also required for IR-induced ATM and rad3 related activation and Chk1 phosphorylation in MCF-7 cells. These results implicate an important interaction between BRCA1 and ERK1/2 in the regulation of cellular response after IR-induced DNA damage in MCF-7 cells. [Cancer Res 2008;68(13):5113–21]
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    21
    Citations
    NaN
    KQI
    []