Synthesis and Fabrication of Nanocomposite Fibers of Collagen-Cellulose Nanocrystals by Coelectrocompaction

2017 
An electrochemical process has been used to compact cellulose nanocrystals (CNC) and access aligned micron-sized CNC fibers. Placing a current across aqueous solutions of carboxylic acid functionalized CNCs (t-CNC–COOH) or carboxylic acid/primary amine functionalized CNCs (t-CNC–COOH-NH2) creates a pH gradient between the electrodes, which results in the migration and concentration of the CNC fibers at their isoelectric point. By matching the carboxylic acid/amine ratio of CNCs and collagen (ca. 30:70 carboxylic acid:amine ratio), it is possible to coelectrocompact both nanofibers and access aligned nanocomposite fibers. t-CNC–COOH-NH2/collagen fibers showed a maximum increase in mechanical properties at 5 wt % of t-CNC–COOH-NH2. Compared to collagen/CNC films which have no alignment in the plane of the films, the tensile properties of the aligned fibers show a significant enhancement in the wet mechanical properties (40 MPa vs 230 MPa) for the 5 wt % of t-CNC–COOH-NH2/collagen films and fiber, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    12
    Citations
    NaN
    KQI
    []