Conductive Mesoporous Niobium Nitride Microspheres/Nitrogen-Doped Graphene Hybrid with Efficient Polysulfide Anchoring and Catalytic Conversion for High-Performance Lithium–Sulfur Batteries

2019 
Lithium–sulfur (Li–S) batteries are promising next-generation energy storage devices because of their high energy density of 2600 Wh kg–1. Efficient immobilization and fast conversion of soluble lithium polysulfide intermediates (LiPSs) are crucial to the electrochemical performance of Li–S batteries. Herein, we report a novel strategy to simultaneously achieve large capacity, high rate capability, and long cycle life by utilizing mesoporous niobium nitride microspheres/N-doped graphene nanosheets (NbN@NG) hybrids as multifunctional host materials for sulfur cathodes. The mesoporous NbN microspheres chemically immobilize LiPSs via Nb–S chemical bonding and catalytically promote conversion of LiPSs into insoluble Li2S resulting in enhanced redox reaction kinetics. Moreover, the highly conductive NbN and N-doped graphene nanosheets provide rapid electron transport and consequently, the S/NbN@NG cathode demonstrates a large capacity of 948 mAh g–1 at 1C (1C = 1650 mA g–1), high rate capability of 739 mAh g–1...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    40
    Citations
    NaN
    KQI
    []