Why does D2 bind better than H2? A theoretical and experimental study of the equilibrium isotope effect on H2 binding in a M(η2-H2) complex. Normal coordinate analysis of W(CO)3(PCy3)2(η2-H2)

1997 
Vibrational data (IR, Raman and inelastic neutron scattering) and a supporting normal coordinate analysis for the complex trans-W(CO)3(PCy3)2(η2-H2) (1) and its HD and D2 isotopomers are reported. The vibrational data and force constants support the well-established η2-bonding mode for the H2 ligand and provide unambiguous assignments for all metal−hydrogen stretching and bending frequencies. The force constant for the HH stretch, 1.3 mdyn/A, is less than one-fourth the value in free H2 and is similar to that for the WH stretch, indicating that weakening of the H−H bond and formation of W−H bonds are well along the reaction coordinate to oxidative addition. The equilibrium isotope effect (EIE) for the reversible binding of dihydrogen (H2) and dideuterium (D2) to 1 and 1-d2 has been calculated from measured vibrational frequencies for 1 and 1-d2. The calculated EIE is “inverse” (1-d2 binds D2 better than 1 binds H2), with KH/KD = 0.78 at 300 K. The EIE calculated from vibrational frequencies may be resolve...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    73
    Citations
    NaN
    KQI
    []