New microfossil and strontium isotope chronology used to identify the controls of Miocene reefs and related facies in NW Cyprus

2020 
The existing chronostratigraphic framework in NW Cyprus of two-phase, Early and Late Miocene reef and associated facies development is tested and improved using a combination of calcareous nannofossil, benthic and planktic foraminiferal, and also Sr isotope dating. Following localised Late Oligocene neritic carbonate deposition (e.g. benthic foraminiferal shoals), reefs and related facies (Terra Member) began to develop c. 24 Ma (Aquitanian) and terminated c. 16 Ma (end-Burdigalian). Early Miocene reef and marginal facies were then extensively redeposited as multiple debris-flow deposits until c. 13.7 Ma, influenced by a combination of global sea-level fall (related to growth of the East Antarctic Ice Sheet) and local- to regional-scale tectonics. Reef growth and related deposition resumed (Koronia Member) c. 9.1 Ma (Tortonian), then terminated by c. 6.1 Ma (mid-Messinian), followed by the Messinian salinity crisis. Neritic accumulation in NW Cyprus began earlier (Late Oligocene), than in southern Cyprus (Early Miocene). The Early Miocene reefs developed on a c. N-S-trending structural high in the west (Akamas Peninsula area) whereas the Late Miocene reefs developed on both flanks of the neotectonic Polis graben. The two-phase reef development is mirrored in SE Cyprus and in some other Mediterranean areas; e.g. S Turkey, Israel, Italy, S Spain. Supplementary material: GPS Locations of dated samples, the Sr isotope method and the samples examined for planktic foraminifera biostratigraphy are available at https://doi.org/10.6084/m9.figshare.c.5205315.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    151
    References
    1
    Citations
    NaN
    KQI
    []