Quantum-chemical investigations of phenol and larger aromatic molecules at the TiO2 anatase (101) surface

2008 
Adsorption of aromatic molecules at the (101) surface of titanium dioxide anatase is studied by quantum-chemical B3LYP computations, where both cluster and periodic calculations were performed and compared. For phenol different adsorption modes at a TiO2 cluster were mapped out and the energetically most favourable conformation was used for investigation of the electronic structure, for periodic calculations, and as a mould for the adsorption modes of phenylmethanol, phenylethanol, naphthalen-2-ol, phenanthren-2-ol, pyren-2-ol and perylen-2-ol. The alcohols form a H-bond to a surface O and a O(molecule)-Ti bond. For the larger aromatic molecules their increasingly higher HOMO levels decrease the effective bad gap of the system. Inclusion of spacer groups as in phenylmethanol and phenylethanol results in higher adsorption energies and larger band gaps. The LUMOs for the adsorbates help visualize the electronic coupling to the surface. Comparison of the cluster with the periodic model indicates that the former describes the electronic coupling in a similar manner as the latter, although the former lacks in the description of the anatase substrate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    9
    Citations
    NaN
    KQI
    []