High-performance InSe Transistors with Ohmic Contact Enabled by Nonrectifying-barrier-type Indium Electrodes.

2018 
The electrical contact to two-dimensional (2D)-semiconductor materials are decisive to the electronic performance of 2D-semiconductor field-effect devices (FEDs). The presence of a Schottky barrier often leads to a large contact resistance, which seriously limits the channel conductance and carrier mobility measured in a two-terminal geometry. In contrast, ohmic contact is desirable and can be achieved by the presence of a nonrectifying or tunneling barrier. Here, we demonstrate that an nonrectifying barrier can be realized by contacting indium (In), a low work function metal, with layered InSe because of a favorable band alignment at the In-InSe interface. The nonrectifying barrier is manifested by ohmic contact behavior at T=2 K and a low barrier height, {\Phi}$_B$=50 meV. This ohmic contact enables demonstration of an ON-current as large as 410 {\mu}A/{\mu}m, which is among the highest values achieved in FEDs based on layered semiconductors. A high electron mobility of 3,700 and 1,000 cm$^2$/Vs is achieved with the two-terminal In-InSe FEDs at T=2 K and room temperature, respectively, which can be attributed to enhanced quality of both conduction channel and the contacts. The improvement in the contact quality is further proven by an X-ray photoelectron spectroscopy study, which suggests that a reduction effect occurs at the In-InSe interface. The demonstration of high-performance In-InSe FEDs indicates a viable interface engineering method for next-generation, 2D-semiconductor-based electronics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    0
    Citations
    NaN
    KQI
    []