Dynamic Contrast-Enhanced MRI Assessment of Hyperemic Fractional Microvascular Blood Plasma Volume in Peripheral Arterial Disease: Initial Findings
2012
Objectives
The aim of the current study was to describe a method that assesses the hyperemic microvascular blood plasma volume of the calf musculature. The reversibly albumin binding contrast agent gadofosveset was used in dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) to assess the microvascular status in patients with peripheral arterial disease (PAD) and healthy controls. In addition, the reproducibility of this method in healthy controls was determined.
Materials and Methods
Ten PAD patients with intermittent claudication and 10 healthy control subjects were included. Patients underwent contrast-enhanced MR angiography of the peripheral arteries, followed by one DCE MRI examination of the musculature of the calf. Healthy control subjects were examined twice on different days to determine normative values and the interreader and interscan reproducibility of the technique. The MRI protocol comprised dynamic imaging of contrast agent wash-in under reactive hyperemia conditions of the calf musculature. Using pharmacokinetic modeling the hyperemic fractional microvascular blood plasma volume (Vp, unit: %) of the anterior tibial, gastrocnemius and soleus muscles was calculated.
Results
Vp was significantly lower for all muscle groups in PAD patients (4.3±1.6%, 5.0±3.3% and 6.1±3.6% for anterior tibial, gastrocnemius and soleus muscles, respectively) compared to healthy control subjects (9.1±2.0%, 8.9±1.9% and 9.3±2.1%). Differences in Vp between muscle groups were not significant. The coefficient of variation of Vp varied from 10–14% and 11–16% at interscan and interreader level, respectively.
Conclusions
Using DCE MRI after contrast-enhanced MR angiography with gadofosveset enables reproducible assessment of hyperemic fractional microvascular blood plasma volume of the calf musculature. Vp was lower in PAD patients than in healthy controls, which reflects a promising functional (hemodynamic) biomarker for the microvascular impairment of macrovascular lesions.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
42
References
12
Citations
NaN
KQI