Differential Expression and Interaction with the Visual G-protein Transducin of Centrin Isoforms in Mammalian Photoreceptor Cells*

2004 
Abstract Photoisomerization of rhodopsin activates a heterotrimeric G-protein cascade leading to closure of cGMP-gated channels and hyperpolarization of photoreceptor cells. Massive translocation of the visual G-protein transducin, Gt, between subcellular compartments contributes to long term adaptation of photoreceptor cells. Ca2+-triggered assembly of a centrin-transducin complex in the connecting cilium of photoreceptor cells may regulate these transducin translocations. Here we demonstrate expression of all four known, closely related centrin isoforms in the mammalian retina. Interaction assays revealed binding potential of the four centrin isoforms to Gtβγ heterodimers. High affinity binding to Gtβγ and subcellular localization of the centrin isoforms Cen1 and Cen2 in the connecting cilium indicated that these isoforms contribute to the centrin-transducin complex and potentially participate in the regulation of transducin translocation through the photoreceptor cilium. Binding of Cen2 and Cen4 to Gβγ of non-visual G-proteins may additionally regulate G-proteins involved in centrosome and basal body functions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    71
    Citations
    NaN
    KQI
    []