Synthesis and RNA binding properties of extended nucleobases for triplex-forming peptide nucleic acids

2019 
Triple-helix formation, using Hoogsteen hydrogen bonding of triplex-forming oligonucleotides, represents an attractive method for sequence-specific recognition of double-stranded nucleic acids. However, practical applications using triple-helix-forming oligonucleotides and their analogues are limited to long homopurine sequences. The key problem for recognition of pyrimidines is that they present only one hydrogen-bond acceptor or donor group in the major groove. Herein, we report our first attempt to overcome this problem by using peptide nucleic acids (PNAs) modified with extended nucleobases that form three hydrogen bonds along the entire Hoogsteen edge of the Watson–Crick base pair. New nucleobase triples (five) were designed, and their hydrogen bonding feasibility was confirmed by ab initio calculations. PNA monomers carrying the modified nucleobases were synthesized and incorporated in short model PNA sequences. Isothermal titration calorimetry showed that these nucleobases had a modest binding affi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    5
    Citations
    NaN
    KQI
    []