Topological Phase Transition in the Non-Hermitian Coupled Resonator Array

2020 
In a two-dimensional non-Hermitian topological photonic system, the physics of topological states is complicated, which brings great challenges for clarifying the topological phase transitions and achieving precise active control. Here, we prove the topological phase transition exists in a two-dimensional parity-time-symmetric coupled-resonator optical waveguide system. We reveal the inherent condition of the appearance of topological phase transition, which is described by the analytical algebraic relation of coupling strength and the quantity of gain-loss. In this framework, the system can be switched between the topological and trivial states by pumping the site rings. This work provides a new degree of freedom to control topological states and offers a scheme for studying non-Hermitian topological photonics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    15
    Citations
    NaN
    KQI
    []