GDNF-induced Osteopontin Secretion from Müller Glial Cells Promotes Photoreceptor Survival in the Pde6brd1 Mouse Model of Retinal Degeneration

2011 
Glial cell line-derived neurotrophic factor (GDNF) enhances the survival of a variety of neurons, including photoreceptors (PR) in the retina. In contrast to most other GDNF receptive neurons, GDNF does, however, not exert its neuroprotective activity directly on PR neurons but transmits it indirectly by inducing expression of yet unknown neurotrophic factors in retinal M! glial (RMG) cells. Genome-wide differential transcriptome analyses of GDNF-treated mouse retinas revealed 30 GDNF-induced transcripts containing a total of six genes coding for secreted molecules. Among them was (OPN), a secreted glycoprotein which was expressed in mouse RMG and secreted from primary mouse RMG in culture. Furthermore, OPN secretion was significantly upregulated on GDNF treatment of primary RMG. To validate, whether OPN could qualify as a neuroprotective factor for PR, we evaluated its potential neurotrophic activity on isolated PR in vitro as well as on retinal explants from the retinal degeneration 1 (Pde6b rd1 ) mouse mutant. OPN exerted a significant, positive survival effect on primary porcine PR cells in a concentration-dependent manner and induced activation of PI3K/Akt pro-survival pathway. Moreover, in retinal explant cultures from Pde6b rd1 mice, OPN significantly reduced the percentage of apoptotic cells to levels comparable with that observed in explants from wild-type mice and led to survival of significantly more PR in long-term retinal explant cultures. Our findings suggest that RMG-derived OPN is a novel candidate protein that transmits part of the GDNFinduced neuroprotective activity of RMG to PR cells. V C 2011
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    0
    Citations
    NaN
    KQI
    []