Multimodal Kelvin Probe Force Microscopy Investigations of a Photovoltaic WSe2/MoS2 Type-II Interface

2018 
Atomically thin transition-metal dichalcogenides (TMDC) have become a new platform for the development of next-generation optoelectronic and light-harvesting devices. Here, we report a Kelvin probe force microscopy (KPFM) investigation carried out on a type-II photovoltaic heterojunction based on WSe2 monolayer flakes and a bilayer MoS2 film stacked in vertical configuration on a Si/SiO2 substrate. Band offset characterized by a significant interfacial dipole is pointed out at the WSe2/MoS2 vertical junction. The photocarrier generation process and phototransport are studied by applying a differential technique allowing to map directly two-dimensional images of the surface photovoltage (SPV) over the vertical heterojunctions (vHJ) and in its immediate vicinity. Differential SPV reveals the impact of chemical defects on the photocarrier generation and that negative charges diffuse in the MoS2 a few hundreds of nanometers away from the vHJ. The analysis of the SPV data confirms unambiguously that light abso...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    36
    Citations
    NaN
    KQI
    []