Multimodal Detection of Dopamine by Sniffer Cells Expressing Genetically Encoded Fluorescence Sensors

2021 
Dopamine serves an important role in supporting both locomotor control and higher brain functions such as motivation and learning. Dopaminergic dysfunction is implicated in an equally multidimensional spectrum of neurological and neuropsychiatric diseases. Extracellular dopamine levels are known to be tightly controlled by presynaptic dopamine transporters (DAT), which is also a main target of psychostimulants. Still, detailed data on dopamine dynamics in space and time is needed to fully understand how dopamine signals are encoded and translated into cellular and behavioral responses, and to uncover the pathological effects of dopamine-related diseases. The recently developed genetically encoded fluorescent dopamine sensors enable unprecedented monitoring of dopamine dynamics and have changed the field of in vivo dopamine recording. However, the potential of these sensors to be used for in vitro and ex vivo assays remains unexplored. Here, we demonstrate a generalizable blueprint for making dopamine 9sniffer9 cells for multimodal detection of dopamine in vitro and ex vivo. We generated sniffer cell lines with inducible expression of six different dopamine sensors and performed a head-to-head comparison of sensor properties to guide users in sensor selection. In proof-of-principle experiments, we show how the sniffer cells can be applied to measure release of endogenous dopamine from cultured neurons and striatal slices, and for determining total dopamine content in striatal tissue. Furthermore, we use the sniffer cells to quantify DAT-mediated dopamine uptake, and AMPH-induced and constitutive dopamine efflux as a radiotracer free, high-throughput alternative to electrochemical- and radiotracer-based assays. Importantly, the sniffer cells framework can readily be applied to other transmitter systems for which the list of genetically encoded fluorescent sensors is rapidly growing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    0
    Citations
    NaN
    KQI
    []