Eastward-propagating planetary wave in the polar middle atmosphere

2021 
Abstract. We presented the global variations of the eastward propagating wavenumber 1 (E1), 2 (E2), 3 (E3), and 4 (E4) planetary waves (PWs) and their diagnostic results in the polar middle atmosphere, using MERRA-2 temperature and wind datasets in 2019. It is clearly shown that the eastward wave modes exist during winter periods with westward background wind in both hemispheres. The maximum wave amplitudes in the southern hemisphere (SH) are slightly larger and lie lower than those in the northern hemisphere (NH). It is also found that the wave perturbations peak at lower latitudes with smaller amplitude as the wavenumber increases. The period of the E1 mode varies from 3 to 5 days in both hemispheres, while the period of E2 mode is slightly longer in the NH (48 h) than in the SH (40 h). The periods of the E3 are ~30 h in both SH and NH, and the period of E4 is ~24 h. Though the wave periods become shorter as the wavenumber increases, their mean phase speeds are relatively stable, which are ~53, ~58, ~55, and ~52 m/s at 70° latitudes for W1, W2, W3, and W4, respectively. The eastward PWs occur earlier with increasing zonal wavenumber, which agrees well with the seasonal variations of the background zonal wind through the generation of critical layers. Diagnostic analysis also shows that the mean flow instability in the upper stratosphere and upper mesosphere may both contribute to the amplification of the eastward PWs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    0
    Citations
    NaN
    KQI
    []