Virtual Power Plant Control for Large Residential Communities using HVAC Systems for Energy Storage

2021 
Heating, ventilation, and air-conditioning (HVAC) systems use the most electricity of any household appliance in residential communities. HVAC system modeling facilitates the study of demand response (DR) at both the residential and power system levels. In this paper, the equivalent thermal model of a reference house is proposed. Parameters for the reference house were determined based on the systematic study of experimental data obtained from fully instrumented field demonstrators. Energy storage capacity of HVAC systems is calculated and an equivalent state-of-charge (SOC) is defined. The uniformity between HVAC systems and battery energy storage systems (BESS) is demonstrated by DR control. The aggregated HVAC load model is based on the reference house and considers a realistic distribution of HVAC parameters derived from one of the largest smart grid field demonstrators in rural America. A sequential DR scheme as part of a Virtual Power Plant (VPP) control is proposed to reduce both ramping rate and peak power at the aggregated level, while maintaining human comfort according to ASHRAE standards.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []