Elastic moduli of lungs during postnatal development in the piglet
1989
Several manifestations of lung disease during infancy suggest that mechanical interdependence can be relatively high in newborn lungs. To test this possibility, we measured elastic moduli and pleural membrane tension in lungs excised from piglets ranging in age from less than 12 h to 85 days. Near maximum inflation, newborn lungs (less than 12 h, n = 6) had no detectable pleural membrane tension, although 3- to 5-day-old lungs (n = 6) had tension greater than 5,000 dyn/cm. In contrast, parenchymal recoil was greater in the newborn lungs [19.3 +/- 3.0 (SD) vs. 14.3 +/- 2.4 cmH2O at 90% of maximum inflation volume, P less than 0.01]. Shear moduli were higher (13.5 +/- 4.6 vs. 9.2 +/- 1.5 cmH2O at 15 cmH2O transpulmonary pressure, P less than 0.05) and Poisson ratios were lower in the newborn lungs as compared with the 3- to 5-day-old lungs. Postnatal lung growth between 3 and 85 days was characterized by 1) a constant shear modulus (0.6 times transpulmonary pressure); 2) decrease in the bulk modulus (from 6.8 to 5.1 times transpulmonary pressure, P less than 0.005); and 3) evidence of gas trapping at progressively higher transpulmonary pressures. Therefore, growth of parenchyma in the piglet lung is associated with reduced stiffness to volume change but with no effect on overall stiffness to shape change. Nevertheless, a relatively great stiffness to shape change occurs transiently in newborn piglet lungs.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
14
Citations
NaN
KQI