Influence of Aerospace Standard Surface Pretreatment on the Intermetallic Phases and CeCC of 2024-T3 Al-Cu Alloy

2019 
A standard three-step surface pretreatment employed in the aerospace sector for Al alloys have been investigated prior to the generation of cerium conversion coatings (CeCC) on aluminium-copper alloy 2024. Two pretreatments were analysed, one without final acid etching (Pretreatment 1) and another with this step (Pretreatment 2). Both pretreatments affect the alloy intermetallic phases, playing a key role in the development of the CeCC, and also in the susceptibility to localised corrosion in NaCl medium. Scanning electron microscopy coupled with energy-dispersive X-ray analysis (SEM-EDX) revealed that after Pretreatment 2, Al(Cu,Mg) phases were partially or totally removed through dealloying with their subsequent copper enrichment. Conversely, none of these intermetallic phases were affected when the final acid step was not employed (Pretreatment 1). Meanwhile, Al-Cu-Fe-Mn-(Si) phases, the other major Al–Cu alloys intermetallics, suffers minor changes through the whole pretreatments chain. The protective efficiency of CeCC was evaluated using electrochemical techniques based on linear polarisation (LP) and electrochemical impedance spectroscopy (EIS). Samples with CeCC deposited after the Pretreatment 1 gave higher polarisation resistance and impedance module than CeCC deposited after Pretreatment 2. SEM-EDX and X-ray photoelectron spectroscopy analysis (XPS) indicate that the main factors explaining the corrosion resistance of the coatings is the existence of Al(Cu,Mg) intermetallics in the surface of the alloy, which promote the deposition of a cerium-based coating rich in Ce4+ compounds. These Al(Cu,Mg) intermetallics were kept in the 2024 alloy when acid etching was not employed (Pretreatment 1).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    7
    Citations
    NaN
    KQI
    []