Hg0.04Zn3.96Sb3: Synthesis, Crystal Structure, Phase Transition, and Thermoelectric Properties.

2008 
The thermoelectric material Zn4Sb3 was mercury doped by introduction of 1 at. % Hg into the synthesis mixture, resulting in Hg0.04Zn3.96Sb3. The doped compound and an undoped reference were characterized by multitemperature short wavelength synchrotron X-ray powder diffraction, SEM/EDX, differential scanning calorimetry (DSC), and physical property measurements. Rietveld refinements suggest that mercury substitution takes place solely on the Zn1 framework site of the disordered room temperature β-phase crystal structure, while the interstitial positions are mercury-free. The refined composition suggests a doping level of 0.6%. The remaining mercury is present as elemental Hg as evidenced by SEM/EDX analysis, the presence of peaks corresponding to crystalline Hg below the Hg freezing temperature, and the presence of a drop in the resistivity at the superconducting transition temperature of Hg. Rietveld refinements of multitemperature synchrotron X-ray powder diffraction data (180 K < T < 290 K, ΔT = 10 K) ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    0
    Citations
    NaN
    KQI
    []