Insight into the combinatorial transcriptional regulation on α-amylase gene in animal groups with different dietary nutrient content

2019 
Abstract Gene expression is generally regulated by multiple transcription factors (TFs). Despite previous findings of individual TFs regulating pancreatic α-amylase gene expression, the combinatorial transcriptional regulation is not fully understood. To gain insight into multiple TF regulation for pancreatic α-amylase gene, we employed a function conservation approach to predict interacting TFs regulating pancreatic α-amylase gene for 3 dietary animal groups. To this end, we have identified 77, 25, and 118 interacting TFs for herbivore, omnivore, and carnivore, respectively. Computational modeling of TF regulatory networks demonstrated that known pancreas-specific TFs (e.g. GR, NFAT, and PR) may play important roles in recruiting non pancreas-specific TFs to the TF-TF interaction networks, offering specificity and flexibility for controlling pancreatic α-amylase gene expression in different dietary animal groups. The findings from this study indicate that combinatorial transcriptional regulation could be a critical component controlling pancreatic α-amylase gene expression.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []