Secure KNN Classification Scheme Based on Homomorphic Encryption for Cyberspace

2021 
With the advent of the intelligent era, more and more artificial intelligence algorithms are widely used and a large number of user data are collected in the cloud server for sharing and analysis, but the security risks of private data breaches are also increasing in the meantime. CKKS homomorphic encryption has become a research focal point in the cryptography field because of its ability of homomorphic encryption for floating-point numbers and comparable computational efficiency. Based on the CKKS homomorphic encryption, this paper implements a secure KNN classification scheme in cloud servers for Cyberspace (CKKSKNNC) and supports batch calculation. This paper uses the CKKS homomorphic encryption scheme to encrypt user data samples and then uses Euclidean distance, Pearson similarity, and cosine similarity to compute the similarity between ciphertext data samples. Finally, the security classification of the samples is realized by voting rules. This paper selects IRIS data set for experimental, which is the classification data set commonly used in machine learning. The experimental results show that the accuracy of the other three similarity algorithms of the IRIS data is around 97% except for the Pearson correlation coefficient, which is almost the same as that in plaintext, which proves the effectiveness of this scheme. Through comparative experiments, the efficiency of this scheme is proved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []