Differential aberrant structural synaptic plasticity in axons and dendrites ahead of their degeneration in tauopathy

2020 
Neurodegeneration driven by aberrant tau is a key feature of many dementias. Pathological stages of tauopathy are characterised by reduced synapse density and altered synapse function. Furthermore, changes in synaptic plasticity have been documented in the early stages of tauopathy suggesting that they may be a driver of later pathology. However, it remains unclear if synapse plasticity is specifically linked to the degeneration of neurons. This is partly because, in progressive dementias, pathology can vary widely from cell-to-cell along the prolonged disease time-course. To overcome this variability, we have taken a longitudinal experimental approach to track individual neurons through the progression of neurodegenerative tauopathy. Using repeated in vivo 2-photon imaging in rTg4510 transgenic mice, we have measured structural plasticity of presynaptic terminaux boutons and postsynaptic spines on individual axons and dendrites over long periods of time. By following individual neurons, we have measured synapse density across the neuronal population and tracked changes in synapse turnover in each neuron. We found that tauopathy drives a reduction in density of both presynaptic and postsynaptic structures and that this is partially driven by degeneration of individual axons and dendrites that are spread widely across the disease time-course. Both synaptic loss and neuronal degeneration was ameliorated by reduction in expression of the aberrant P301L transgene, but only if that reduction was initiated early in disease progression. Notably, neurite degeneration was preceded by alterations in synapse turnover that contrasted in axons and dendrites. In dendrites destined to die, there was a dramatic loss of spines in the week immediately before degeneration. In contrast, axonal degeneration was preceded by a progressive attenuation of presynaptic turnover that started many weeks before axon disappearance. Therefore, changes in synapse plasticity are harbingers of degeneration of individual neurites that occur at differing stages of tau-driven neurodegenerative disease, suggesting a cell or neurite autonomous process. Furthermore, the links between synapse plasticity and degeneration are distinct in axonal and dendritic compartments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    3
    Citations
    NaN
    KQI
    []