Exactness and Convergence Properties of Some Recent Numerical Quadrature Formulas for Supersingular Integrals of Periodic Functions

2021 
In a recent work, we developed three new compact numerical quadrature formulas for finite-range periodic supersingular integrals $$I[f]={\mathop\int{\!\!\!\!\!\!=}}^{\,\,b}_{\!\!a} f(x)\,dx$$ , where $$f(x)=g(x)/(x-t)^3,$$ assuming that $$g\in C^\infty [a,b]$$ and f(x) is T-periodic, $$T=b-a$$ . With $$h=T/n$$ , these numerical quadrature formulas read $$\begin{aligned} {\widehat{T}}{}^{(0)}_n[f]&=h\sum ^{n-1}_{j=1}f(t+jh) -\frac{\pi ^2}{3}\,g'(t)\,h^{-1}+\frac{1}{6}\,g'''(t)\,h,\\ {\widehat{T}}{}^{(1)}_n[f]&=h\sum ^n_{j=1}f(t+jh-h/2) -\pi ^2\,g'(t)\,h^{-1}, \\ {\widehat{T}}{}^{(2)}_n[f]&=2h\sum ^n_{j=1}f(t+jh-h/2)- \frac{h}{2}\sum ^{2n}_{j=1}f(t+jh/2-h/4). \end{aligned}$$ We also showed that these formulas have spectral accuracy; that is, $$\begin{aligned} {\widehat{T}}{}^{(s)}_n[f]-I[f]=o(n^{-\mu })\quad \text {as }n\rightarrow \infty \quad \forall \mu >0. \end{aligned}$$ In the present work, we continue our study of these formulas for the special case in which $$f(x)=\frac{\cos \frac{\pi (x-t)}{T}}{\sin ^3\frac{\pi (x-t)}{T}}\,u(x)$$ , where u(x) is in $$C^\infty ({\mathbb {R}})$$ and is T-periodic. Actually, we prove that $${\widehat{T}}{}^{(s)}_n[f]$$ , $$s=0,1,2,$$ are exact for a class of singular integrals involving T-periodic trigonometric polynomials of degree at most $$n-1$$ ; that is, $$\begin{aligned} {\widehat{T}}{}^{(s)}_n[f]=I[f]\quad \text {when } f(x)=\frac{\cos \frac{\pi (x-t)}{T}}{\sin ^3\frac{\pi (x-t)}{T}}\,\sum ^{n-1}_{m=-(n-1)} c_m\exp (\mathrm {i}2m\pi x/T). \end{aligned}$$ We also prove that, when u(z) is analytic in a strip $$\big |\text {Im}\,z\big |<\sigma $$ of the complex z-plane, the errors in all three $${\widehat{T}}{}^{(s)}_n[f]$$ are $$O(e^{-2n\pi \sigma /T})$$ as $$n\rightarrow \infty $$ , for all practical purposes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    0
    Citations
    NaN
    KQI
    []