Hall micromagnetometry of individual two-dimensional ferromagnets

2019 
The recent advent of atomically-thin ferromagnetic crystals has allowed experimental studies of two-dimensional (2D) magnetism that not only exhibits novel behavior due to the reduced dimensionality but also often serves as a starting point for understanding of the magnetic properties of bulk materials. Here we employ ballistic Hall micromagnetometry to study magnetization of individual 2D ferromagnets. Our devices are multilayer van der Waals (vdW) heterostructures comprising of an atomically-thin ferromagnetic crystal placed on top of a Hall bar made from encapsulated graphene. 2D ferromagnets can be replaced repeatedly, making the graphene-based Hall magnetometers reusable and expanding a range of their possible applications. The technique is applied for the quantitative analysis of magnetization and its behavior in atomically thin CrBr3. The compound is found to remain ferromagnetic down to a monolayer thickness and exhibit high out-of-plane anisotropy. We report how the critical temperature changes with the number of layers and how domain walls propagate through the ultimately thin ferromagnets. The temperature dependence of magnetization varies little with thickness, in agreement with the strongly layered nature of CrBr3. The observed behavior is markedly different from that given by the simple 2D Ising model normally expected to describe 2D easy-axis ferromagnetism. Due to the increasingly common usage of vdW assembly, the reported approach offers vast possibilities for investigation of 2D magnetism and related phenomena.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    11
    Citations
    NaN
    KQI
    []