Finite element analysis of metallurgical phase transformations in AA 6056-T4 and their effects upon the residual stress and distortion states of a laser welded T-joint

2011 
Abstract Aircraft industry makes extensive use of aluminium alloy AA 6056-T4 in the fabrication of fuselage panels using laser beam welding technique. Since high temperatures are involved in the manufacturing process, the precipitation/dissolution occurrences are expected as solid state phase transformations. These transformations are likely to affect the residual distortion and stress states of the component. The present work investigates the effect of metallurgical phase transformations upon the residual stresses and distortions induced by laser beam welding in a T-joint configuration using the finite element method. Two separate models were studied using different finite element codes, where the first one describes a thermo-mechanical analysis using Abaqus; while the second one discusses a thermo-metallo-mechanical analysis using Sysweld. A comparative analysis of experimentally validated finite element models has been performed and the residual stress states with and without the metallurgical phase transformations are predicted. The results show that the inclusion of phase transformations has a negligible effect on predicted distortions, which are in agreement with the experimental data, but an effect on predicted residual stresses, although the experimentally measured residual stresses are not available to support the analyses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    40
    Citations
    NaN
    KQI
    []