Natural Gradient Optimization for Optical Quantum Circuits

2021 
Optical quantum circuits can be optimized using gradient descent methods, as the gates in a circuit can be parametrized by continuous parameters. However, the parameter space as seen by the cost function is not Euclidean, which means that the Euclidean gradient does not generally point in the direction of steepest ascent. In order to retrieve the steepest ascent direction, in this work we implement Natural Gradient descent in the optical quantum circuit setting, which takes the local metric tensor into account. In particular, we adapt the Natural Gradient approach to a complex-valued parameter space. We then compare the Natural Gradient approach to vanilla gradient descent and to Adam over two state preparation tasks: a single-photon source and a Gottesman-Kitaev-Preskill state source. We observe that the NG approach has a faster convergence (due in part to the possibility of using larger learning rates) and a significantly smoother decay of the cost function throughout the optimization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    2
    Citations
    NaN
    KQI
    []