Engineering the Kinetics of Directed Self-Assembly of Block Copolymers toward Fast and Defect-Free Assembly
2018
Directed self-assembly (DSA) of block copolymers (BCPs) can achieve perfectly aligned structures at thermodynamic equilibrium, but the self-assembling morphology can become kinetically trapped in defective states. Understanding and optimizing the kinetic pathway toward domain alignment is crucial for enhancing process throughput and lowering defectivity to levels required for semiconductor manufacturing, but there is a dearth of experimental, three-dimensional studies of the kinetic pathways in DSA. Here, we combined arrested annealing and TEM tomography to probe the kinetics and structural evolution in the chemoepitaxy DSA of PS-b-PMMA with density multiplication. During the initial stages of annealing, BCP domains developed independently at first, with aligned structures at the template interface and randomly oriented domains at the top surface. As the grains coarsened, the assembly became cooperative throughout the film thickness, and a metastable stitch morphology was formed, representing a kinetic ba...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
50
References
17
Citations
NaN
KQI