Targeted resequencing showing novel common and rare genetic variants increases the risk of asthma in the Chinese Han population.

2021 
BACKGROUND Although studies have identified hundreds of genetic variants associated with asthma risk, a large fraction of heritability remains unexplained, especially in Chinese individuals. METHODS To identify genetic risk factors for asthma in a Han Chinese population, 211 asthma-related genes were first selected based on database searches. The genes were then sequenced for subjects in a Discovery Cohort (284 asthma patients and 205 older healthy controls) using targeted next-generation sequencing. Bioinformatics analysis and statistical association analyses were performed to reveal the associations between rare/common variants and asthma, respectively. The identified common risk variants underwent a validation analysis using a Replication Cohort (664 patients and 650 controls). RESULTS First, we identified 18 potentially functional rare loss-of-function (LOF) variants in 21/284 (7.4%) of the asthma cases. Second, using burden tests, we found that the asthma group had nominally significant (p < 0.05) burdens of rare nonsynonymous variants in 10 genes. Third, 23 common single-nucleotide polymorphisms were associated with the risk of asthma, 7/23 (30.4%) and 9/23 (39.1%) of which were modestly significant (p < 9.1 × 10-4 ) in the Replication Cohort and Combined Cohort, respectively. According to our cumulative risk model involving the modestly associated alleles, middle- and high-risk subjects had a 2.0-fold (95% CI: 1.621-2.423, p = 2.624 × 10-11 ) and 6.0-fold (95% CI: 3.623-10.156, p = 7.086 × 10-12 ) increased risk of asthma, respectively, compared with low-risk subjects. CONCLUSION This study revealed novel rare and common genetic risk factors for asthma, and provided a cumulative risk model for asthma risk prediction and stratification in Han Chinese individuals.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    0
    Citations
    NaN
    KQI
    []