Medial prefrontal cortex diclofenac-induced antinociception is mediated through GPR55, cannabinoid CB1, and mu-opioid receptors of this area and periaqueductal gray

2019 
Supraspinal mechanisms of non-steroidal anti-inflammatory drug (NSAID)-induced antinociception are not well understood. In the present study, the possible antinociceptive mechanisms induced by intra-medial prefrontal cortex (intra-mPFC) microinjection of diclofenac were investigated after blockade of GPR55, cannabinoid CB1, and mu-opioid receptors in this area and ventrolateral periaqueductal gray (vlPAG). For drug delivery, unilateral (left side) of mPFC and bilateral (right and left sides) of vlPAG were surgically cannulated. Formalin test was induced by subcutaneous injection of a diluted formalin solution into the right vibrissa pad. A typical biphasic (neurogenic and inflammatory phases) pain behavior was produced following formalin injection. Microinjection of diclofenac (2.5, 5, and 10 μg/0.25 μL) into the mPFC suppressed both phases of pain. Intra-mPFC microinjection of naloxonazine (a mu-opioid receptor antagonist, 1 μg/0.25 μL) and AM251 (a cannabinoid CB1 receptor antagonist, 1 μg/0.25 μL) increased both phases of pain intensity. In addition, intra-mPFC-microinjected diclofenac-induced antinociception was inhibited by prior intra-mPFC and intra-vlPAG administration of naloxonazine and AM251. On the other hand, intra-mPFC and intra-vlPAG microinjection of AM251 (0.25 μg/0.25 μL) decreased pain severity which was inhibited by prior administration of ML193. The above-mentioned drugs did not alter locomotor activity. In conclusion, diclofenac suppressed both the neurogenic and inflammatory phases of formalin-induced orofacial pain at the level of mPFC. GPR55, cannabinoid CB1, and mu-opioid receptors of the mPFC and vlPAG might be involved in the mPFC analgesic effects of diclofenac.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    0
    Citations
    NaN
    KQI
    []