Finite-time leaderless consensus of uncertain multi-agent systems against time-varying actuator faults

2019 
Abstract This paper addresses the finite-time leaderless consensus problem for a class of continuous-time multi-agent systems subject to linear fractional transformation uncertain parameters using an observer-based fault-tolerant controller. Here, it is considered that the network of the system is described by an undirected graph subject to fixed topology and the aforementioned controller is impacted by time-varying actuator faults. Then, the desired consensus protocols are proposed in such a way that the effects of possible uncertainties and actuator faults are compensated efficiently within a prescribed finite-time period. More precisely, the leaderless consensus analysis is carried out in the framework of Lyapunov-Krasovskii functional and the required conditions for the existence of proposed fault-tolerant controller are derived in terms of linear matrix inequalities. Moreover, the proposed consensus design parameters can be computed by solving a set of linear matrix inequality constraints. Finally, two examples including a formation flying satellites model are provided to show the efficiency and usefulness of the proposed control scheme.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    24
    Citations
    NaN
    KQI
    []