Prediction of the Rate Penetration while Drilling Horizontal Carbonate Reservoirs Using a Self-Adaptive Artificial Neural Network Technique

2020 
Rate of penetration (ROP) is one of the most important drilling parameters for optimizing the cost of drilling hydrocarbon wells. In this study, a new empirical correlation based on an optimized artificial neural network (ANN) model was developed to predict ROP alongside horizontal drilling of carbonate reservoirs as a function of drilling parameters, such as rotation speed, torque, and weight-on-bit, combined with conventional well logs, including gamma-ray, deep resistivity, and formation bulk density. The ANN model was trained using 3000 data points collected from Well-A and optimized using the self-adaptive differential evolution (SaDE) algorithm. The optimized ANN model predicted ROP for the training dataset with an average absolute percentage error (AAPE) of 5.12% and a correlation coefficient (R) of 0.960. A new empirical correlation for ROP was developed based on the weights and biases of the optimized ANN model. The developed correlation was tested on another dataset collected from Well-A, where it predicted ROP with AAPE and R values of 5.80% and 0.951, respectively. The developed correlation was then validated using unseen data collected from Well-B, where it predicted ROP with an AAPE of 5.29% and a high R of 0.956. The ANN-based correlation outperformed all previous correlations of ROP estimation that were developed based on linear regression, including a recent model developed by Osgouei that predicted the ROP for the validation data with a high AAPE of 14.60% and a low R of 0.629.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    21
    Citations
    NaN
    KQI
    []