Real-Time Visualization of Damage Progression Inside GFRCs via High-Speed X-Ray PCI Technique

2021 
Insight into damage progression within glass fiber reinforced composites (GFRCs) contributes to understanding failure of composites by interaction of various damage modes, developing physics-based canonical theoretical models, and finally manufacturing desired compositions. In this work, dynamic singe-edge notched bending (DSENB) experiments were performed on a modified Kolsky compression bar, impacting the notched composite beam onto an indenter mounted in front of a load cell. The high-speed X-ray phase-contrast imaging (PCI) technique was used to penetrate the opaque composite and capture in real time the detailed damage initiation and evolution inside the GFRC. Experimental results were compared with those obtained by optical imaging technique, revealing high-speed X-ray PCI technique was able to characterize the inner layers of composite and capture the damage progression among multiple composite layers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    0
    Citations
    NaN
    KQI
    []