Characterization of Organosolv Birch Lignins: Toward Application-Specific Lignin Production

2021 
Organosolv pretreatment represents one of the most promising biomass valorization strategies for renewable carbon-based products; meanwhile, there is an overall lack of holistic approach to how extraction conditions affect the suitable end-usages. In this context, lignin extracted from silver birch (Betula pendula L.) by a novel hybrid organosolv/steam-explosion treatment at varying process conditions (EtOH %; time; catalyst %) was analyzed by quantitative NMR (1H-13C HSQC; 13C NMR; 31P NMR), gel permeation chromatography, Fourier transform infrared (FT-IR), Pyr-gas chromatography-mass spectroscopy (GC/MS), and thermogravimetric analysis, and the physicochemical characteristics of the lignins were discussed regarding their potential usages. Characteristic lignin interunit bonding motifs, such as β-O-4', β-β', and β-5', were found to dominate in the extracted lignins, with their abundance varying with treatment conditions. Low-molecular-weight lignins with fairly unaltered characteristics were generated via extraction with the highest ethanol content potentially suitable for subsequent production of free phenolics. Furthermore, β-β' and β-5' structures were predominant at higher acid catalyst contents and prolonged treatment times. Higher acid catalyst content led to oxidation and ethoxylation of side-chains, with the concomitant gradual disappearance of p-hydroxycinnamyl alcohol and cinnamaldehyde. This said, the increasing application of acid generated a broad set of lignin characteristics with potential applications such as antioxidants, carbon fiber, nanoparticles, and water remediation purposes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    2
    Citations
    NaN
    KQI
    []