Deep Semantic Image Segmentation for UAV-UGV Cooperative Path Planning: A Car Park Use Case

2020 
Navigation of Unmanned Ground Vehicles (UGV) in unknown environments is an active area of research for mobile robotics. A main hindering factor for UGV navigation is the limited range of the on-board sensors that process only restricted areas of the environment at a time. In addition, most existing approaches process sensor information under the assumption of a static environment. This restrains the exploration capability of the UGV especially in time-critical applications such as search and rescue. The cooperation with an Unmanned Aerial Vehicle (UAV) can provide the UGV with an extended perspective of the environment which enables a better-suited path planning solution that can be adjusted on demand. In this work, we propose a UAV-UGV cooperative path planning approach for dynamic environments by performing semantic segmentation on images acquired from the UAV’s view via a deep neural network. The approach is evaluated in a car park scenario, with the goal of providing a path plan to an empty parking space for a ground-based vehicle. The experiments were performed on a created dataset of real-world car park images located in Croatia and Germany, in addition to images from a simulated environment. The segmentation results demonstrate the viability of the proposed approach in producing maps of the dynamic environment on demand and accordingly generating path plans for ground-based vehicles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    0
    Citations
    NaN
    KQI
    []