Optimizing a High-Entropy System: Software-AssistedDevelopment of Highly Hydrophobic Surfaces using an Amphiphilic Polymer

2019 
In materials science, the investigation of a large and complex experimental space is time-consuming and thus may induce bias to exclude potential solutions where little to no knowledge is available. This work presents the development of a highly hydrophobic material from an amphiphilic polymer through a novel, adaptive artificial intelligence approach. The hydrophobicity arises from the random packing of short polymer fibers into paper, a highly entropic, multistep process. Using Bayesian optimization, the algorithm is able to efficiently navigate the parameter space without bias, including areas which a human experimenter would not address. This resulted in additional knowledge gain, which can then be applied to the fabrication process, resulting in a highly hydrophobic material (static water contact angle 135°) from an amphiphilic polymer (contact angle of 90°) through a simple and scalable filtration-based method. This presents a potential pathway for surface modification using the short polymer fibers...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    5
    Citations
    NaN
    KQI
    []