Cocaine self-administration induces changes in synaptic transmission and plasticity in ventral hippocampus.
2017
Abstract Allowing rats extended access to cocaine self-administration is thought to recapitulate several key aspects of cocaine addiction in humans. Understanding the mechanisms that underlie drug-induced neuroadaptations that persist in the brain after protracted periods of abstinence is crucial towards the goal of developing therapeutic interventions for this disease state. We have employed both whole-cell voltage clamp and extracellular recording technique to assess changes in neurotransmission and long-term potentiation (LTP) in stratum radiatum of the CA1 region using the rat ventral hippocampal slice preparation. Rats allowed to self-administer cocaine daily, including 'long access' (6 hours) sessions, exhibited an increase in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/N-methyl-d-aspartate current ratio and enhanced excitatory transmission following 3-5 weeks of abstinence. Inhibitory transmission was also significantly decreased in long-access animals, and the AMPA/N-methyl-d-aspartate ratio measured in the absence of GABAergic blockers was greatly enhanced. We also observed a significant reduction of LTP magnitude evoked in the long-access cocaine rats. These findings suggest the presence of synergistic effects of enhanced AMPA and diminished gamma-aminobutyric acid neurotransmission under physiological conditions in the CA1 region of cocaine-taking animals, supporting the conclusion that persisting enhancement of AMPA-mediated transmission and/or inhibition of gamma-aminobutyric acid-mediated transmission promoted a chronic state of potentiation that partially occluded further LTP. This increased output from the ventral hippocampus to other limbic areas would be among the drug-induced neuroadaptations that persist following abstinence from cocaine self-administration and therefore may contribute to the disease state of addiction.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
47
References
18
Citations
NaN
KQI