Effects of induced anisotropy on multiple liquefaction properties of sand with initial static shear

2019 
Abstract The multiple liquefaction phenomenon has been attracting the attention of more and more researchers and engineers since the 2010–2011 Christchurch Earthquakes and the 2011 Great East Japan Earthquake. However, little has been known about the multiple liquefaction properties of sloped grounds. In this study, therefore, multiple liquefaction tests that consider the initial static shear stress, which have never been conducted before, were carried out with a special designed apparatus, the stacked-ring shear apparatus. A series of multiple liquefaction tests revealed that induced anisotropy, which is weak against the loading opposite to the direction of the initial static shear stress, was produced by the liquefaction of a sloped ground. As a result, a significant decrease in the liquefaction resistance during the next cyclic of shearing occurred. The indicators which influenced the magnitude of anisotropy were also discussed from the perspective of the reconsolidation procedures, the magnitude of initial static shear stress, and the type of ending of the previous liquefaction stage. In addition, it turned out that in the multiple liquefaction test with a larger initial static shear stress, the re-liquefaction resistance was higher because the shear stress opposite to the direction of the initial static shear stress, causing large negative dilatancy due to anisotropy, was smaller in that test.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    6
    Citations
    NaN
    KQI
    []