The emerging molecular mechanism of m6A modulators in tumorigenesis and cancer progression
2020
Abstract N6-methyladenosine (m6A) is the most abundant RNA modification; m6A modifications are installed by methyltransferases, removed by demethylases and recognized by reader proteins. M6A plays crucial roles in a variety of biological processes by regulating target RNA translation, splicing, nuclear export, and decay. Since the establishment of methylated RNA immunoprecipitation-sequencing methodology, over three hundred articles about m6A modulators, including "writers", "erasers" and "readers", have been reported in the last four years. In addition, an increasing number of molecular mechanisms underlying m6A RNA methylation in human cancers have been comprehensively clarified. The recently emerged molecular mechanisms of m6A modulators in cancer cell proliferation, cell cycle progression, migration and invasion, apoptosis, and autophagy remain to be summarized. Hence, this review specifically summarizes these recent advances in the understanding of m6A molecular mechanisms in tumorigenesis and cancer progression. In addition, we discuss the prospect of using an m6A methylation modulator as a new diagnostic biomarker and therapeutic target for human cancers.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
115
References
13
Citations
NaN
KQI