Prickle1 stunts limb growth through alteration of cell polarity and gene expression

2013 
Background: Wnt/PCP signaling plays a critical role in multiple developmental processes, including limb development. Wnt5a, a ligand of the PCP pathway, signals through the Ror2/Vangl2 or the Vangl2/Ryk complex to regulate limb development along the proximal-distal axis in mice. Based on the interaction between Van Gogh and Prickle in Drosophila, we hypothesized the vertebrate Prickle1 has a similar function as Vangl2 in limb development. Results: We show Prickle1 is expressed in the skeletal condensates that will differentiate into chondrocytes and later form bones. Disrupted Prickle1 function in Prickle1C251X/C251X mouse mutants alters expression of genes such as Bmp4, Fgf8, Vangl2, and Wnt5a. These expression changes correlate with shorter and wider bones in the limbs and loss of one phalangeal segment in digits 2–5 of Prickle1C251X mutants. These growth defects along the proximal-distal axis are also associated with increased cell death in the growing digit tip, reduced cell death in the interdigital membrane, and disrupted chondrocyte polarity. Conclusions: We suggest Prickle1 is part of the Wnt5a/PCP signaling, regulating cell polarity and affecting expression of multiple factors to stunt limb growth through altered patterns of gene expression, including the PCP genes Wnt5a and Vangl2. Developmental Dynamics 242:1293–1306, 2013. © 2013 Wiley Periodicals, Inc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    27
    Citations
    NaN
    KQI
    []